
1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 1

A Workflow Management System for Scalable
Data Mining on Clouds

Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio

Abstract—The extraction of useful information from data is often a complex process that can be conveniently modeled as a
data analysis workflow. When very large data sets must be analyzed and/or complex data mining algorithms must be executed,
data analysis workflows may take very long times to complete their execution. Therefore, efficient systems are required for
the scalable execution of data analysis workflows, by exploiting the computing services of the Cloud platforms where data is
increasingly being stored. The objective of the paper is to demonstrate how Cloud software technologies can be integrated to
implement an effective environment for designing and executing scalable data analysis workflows. We describe the design and
implementation of the Data Mining Cloud Framework (DMCF), a data analysis system that integrates a visual workflow language
and a parallel runtime with the Software-as-a-Service (SaaS) model. DMCF was designed taking into account the needs of real
data mining applications, with the goal of simplifying the development of data mining applications compared to generic workflow
management systems that are not specifically designed for this domain. The result is a high-level environment that, through an
integrated visual workflow language, minimizes the programming effort, making easier to domain experts the use of common
patterns specifically designed for the development and the parallel execution of data mining applications. The DMCF’s visual
workflow language, system architecture and runtime mechanisms are presented. We also discuss several data mining workflows
developed with DMCF and the scalability obtained executing such workflows on a public Cloud.

Index Terms—Workflows, Data analysis, Cloud computing, Software-as-a-Service, Scalability.

F

1 INTRODUCTION
The past two decades have been characterized by
an exponential growth of digital data production in
many fields of human activities, from science to en-
terprise. Very large datasets are produced daily from
sensors, instruments, mobile devices and computers,
and are often stored in distributed repositories. For
example, astronomers analyze large image data that
every day comes from telescopes and artificial satel-
lites [1]; physicists must study the huge amount of
data generated by particle accelerators to understand
the laws of Universe [2]; medical doctors and bi-
ologists collect huge amount of information about
patients to search and try to understand the causes of
diseases [3]; sociologists analyze large social networks
to find how users are influenced by others for various
reasons [4]. Such few examples demonstrate how the
exploration and automated analysis of large datasets
powered by computing capabilities are fundamental
to advance our knowledge in many fields [5].

Unfortunately, large datasets are hard to under-
stand, and in particular models and patterns hidden
in them cannot be comprehended neither by humans
directly, nor by traditional analysis methodologies.
To cope with big data repositories, parallel and dis-
tributed data analysis techniques must be used. It
is also necessary and helpful to work with data
analysis tools and frameworks allowing the effective

• The authors are with DIMES, University of Calabria, Italy.
E-mail: {fmarozzo,talia,trunfio}@dimes.unical.it

and efficient access, management and mining of such
repositories. In fact, often scientists and professionals
use data analysis environments to execute complex
simulations, validate models, compare and share re-
sults with colleagues located world-wide [6].

Extracting useful information from data is often a
complex process that can be conveniently modeled
as a data analysis workflow combining distributed
datasets, preprocessing tools, data mining algorithms
and knowledge models. Workflows provide a declar-
ative way of specifying the high-level logic of an
application, hiding the low-level details that are not
fundamental for application design. They are also
able to integrate existing software modules, datasets,
and services in complex compositions implementing
discovery processes in scientific and business appli-
cations. Cloud systems can be effectively used to
handle data analysis workflows since they provide
scalable processing and storage services, together with
software platforms for developing data analysis envi-
ronment on top of such services [7].

The objective of the paper is to demonstrate how
Cloud software technologies can be integrated to im-
plement an effective programming environment and
an efficient runtime system for designing and exe-
cuting scalable data analysis workflows. Specifically,
the paper describes design and implementation of the
Data Mining Cloud Framework (DMCF), a system
that integrates a visual workflow language and a
parallel runtime with the Software-as-a-Service (SaaS)
model for enabling the scalable execution of complex
data analysis workflows on Clouds. The main contri-



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 2

bution of DMCF is the integration of different hard-
ware/software solutions for high-level programming,
management and execution of parallel data mining
workflows.

Through its visual programming model, DMCF
minimizes the programming effort, making easier to
domain experts the use of common patterns specifi-
cally designed for the development and the parallel
execution of data mining applications. This was done
by introducing a visual workflow language, called
VL4Cloud, which includes visual patterns useful in
real data mining applications, in particular: data pre-
processing (data partitioning and filtering); parameter
sweeping (the concurrent execution of many instances
of the same tool with different parameters to find the
best result); input sweeping (the concurrent execution
of many instances of the same tool with different
input data); tool sweeping (the concurrent execution
of different tools on same data); combinations of
parameter, input, and tool sweeping patterns for the
highest flexibility; data and models aggregation (e.g.,
models evaluations, voting operations, models ag-
gregation). For supporting these patterns, VL4Cloud
provides novel data-mining-specific visual workflow
formalisms, data and tool arrays, which significantly
ease the design of parallel data analysis workflows. A
data array allows representing an ordered collection
of input/output data sources in a single workflow
node, while a tool array represents multiple instances
of the same tool. Thanks to data and tool arrays, work-
flows are more compact compared to those designed
using other visual formalisms that oblige developers
to replicate node chains to obtain the same semantic.

The DMCF runtime was designed to enable the
parallel execution of data analysis workflows on mul-
tiple Cloud machines, so as to improve performance
and ensure scalability of applications. To this end, the
runtime implements data-driven task parallelism that
automatically spawns ready-to-run workflow tasks to
the Cloud resources, taking into account dependencies
among tasks and current availability of data to be pro-
cessed. Parallelism is effectively supported by the data
and tool array formalisms of VL4Cloud, because the
array cardinality automatically determines the paral-
lelism degree at runtime. In addition, data and tool
arrays improve generality of workflows and therefore
their reusability. In fact, once defined, a workflow
can be instantiated many times not only changing
the input data or the tools (as in the other workflow
formalisms), but also redefining the parallelism level
by specifying a different cardinality of the data/tool
arrays.

Finally, DMCF is provided according with the SaaS
model. This means that no installation is required on
the user’s machine: the DMCF visual user interface
works in any modern Web browser, and so it can
be run from most devices, including desktop PCs,
laptops, and tablets. This is a key feature for users

who need ubiquitous and seamless access to scalable
data analysis services, without needing to cope with
installation and system management issues. Thanks
to the SaaS approach, user have online access to a
large repository of ready-to-use data handling and
mining algorithms. Many of such algorithms are taken
from open source projects (more than 100 algorithms
from the Weka and Waffles libraries) and several of
them were designed by scratch (e.g., tools for data
splitting, data merging, voting). In addition, it is easy
for every user to add his/her own algorithm in the
system using a visual configuration tool. Through a
guided procedure, the configuration tool allows users
to upload executable files of the new algorithm, and
to specify its input and output parameters.

DMCF has been used to implement data analysis
workflows in a variety of domains. Two significant
examples are an association rule analysis between
genome variations and clinical conditions of a group
of patients [8] and a trajectory mining analysis for
discovering patterns from vehicles trajectory data in a
city [9]. In these two cases, the use of DMCF allowed
the development of data-driven workflows in a direct
and effective way, showing good scalability on large
datasets.

The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 describes
system model, general architecture and execution
mechanisms. Section 4 describes how the framework
has been implemented on top of the Microsoft Azure
Cloud platform. Section 5 describes how the frame-
work allows users to design and execute workflow-
based data analysis applications. Section 6 presents
scalability results of data analysis applications de-
signed and executed using the DMCF framework.
Finally, Section 7 concludes the paper.

2 RELATED WORK
Several systems have been proposed to design and
execute workflow-based applications [10] [11] [12],
but only some of them currently work on the Cloud
and support visual workflow programming. In the
following we discuss representative visual workflow
management systems that can be used in Cloud envi-
ronments.

Galaxy [13] is a web-based platform for developing
genomic science applications, now used as a gen-
eral bioinformatics workflow management system. A
Galaxy workflow is a reusable template that a user can
run repeatedly on different data. The Galaxy [13] soft-
ware runs on Linux/Unix based servers, and there-
fore several organizations execute Galaxy on private
or public Cloud IaaS. In order to improve Galaxy’s
capabilities with respect to interfacing with large scale
computational systems and running workflows in a
parallel manner, Galaxy has recently been integrated
with Swift/T [14], a large-scale parallel programming
framework discussed below.



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 3

Taverna [15] is a workflow management system
mostly used in the life sciences community. Taverna
can orchestrate Web Services and these may be run-
ning in the Cloud, but this is transparent for Taverna,
as demonstrated in the BioVel project. Recently, the
Tavaxy system has been developed for allowing the
integration of Taverna and Galaxy [16]. In particular,
Tavaxy allows users to create and execute workflows
employing an extensible set of workflow patterns
that enables the re-use and integration of existing
workflows from Taverna and Galaxy, and allows the
creation of hybrid workflows.

Orange4WS [17] is a service-oriented workflow sys-
tem that extends Orange, a data mining toolbox and
a visual programming environment for the visual
composition of data mining workflows. The system
enables the orchestration of web-based data mining
services and the collection of information in various
formats, as well as design of repeatable data mining
workflows used in bioinformatics and e-science appli-
cations.

Kepler [18] is a visual workflow management sys-
tem that provides a graphical user interface for de-
signing scientific workflows. Data is encapsulated in
messages or tokens, and transferred between tasks
through input and output ports. Kepler provides an
assortment of built-in components with a major fo-
cus on statistical analysis and supports task parallel
execution of workflows using multiple threads on a
single machine.

E-Science Central (e-SC) [19] allows scientists to
store, analyze and share data in the Cloud. Its in-
browser workflow editor allows users to design a
workflow by connecting services, either uploaded by
themselves or shared by other users of the system.
One of the most common use cases for e-Sc is to pro-
vide a data analysis back end to a standalone desktop
or Web application. In the current implementation, all
the workflow services within a single invocation of a
workflow execute on the same Cloud node.

ClowdFlows [20] is a Cloud-based platform for
the composition, execution, and sharing of interactive
data mining workflows. Its service-oriented archi-
tecture allows using third-party services (e.g., Web
services wrapping open-source or custom data min-
ing algorithms). The server side consists of methods
for the workflow editor to define workflows, and a
relational database of workflows and data.

Pegasus [21] includes a set of technologies to ex-
ecute workflow-based applications over clusters and
Grids. The system can manage the execution of an ap-
plication formalized as a visual workflow by mapping
it onto available resources. Recent research activities
carried out on Pegasus investigated the system imple-
mentation on Cloud platforms [22].

ASKALON [23], is a Cloud-based application de-
velopment environment designed as a distributed
service-oriented architecture. Users can compose

(a) Galaxy version (without arrays).

(b) DMCF version (with arrays).

Fig. 1. An example of data analysis workflow designed
with and without arrays.

workflow using a UML graphical modeling tool. The
abstract workflow representation is given to the mid-
dleware services for transparent execution onto the
Clouds. ASKALON includes components for auto-
matic image management, software deployments, and
authenticating with multiple Cloud providers.

WS-PGRADE [24] allows users to define workflows
through a graphical interface and to execute them on
different distributed computing infrastructures. End-
users can use the system through a simplified inter-
face where they can download a workflow from a
repository, configure its parameter, and launch and
monitor its execution on different distributed comput-
ing infrastructures, including Amazon EC2.

YAWL (Yet Another Workflow Language) [25] is a
modeling language for workflows based on the Petri
Nets formalism, enriched with dedicated constructs to
deal with multiple instance patterns. The language is
supported by a framework that includes an execution
engine, a graphical editor and a worklist handler.
Recently, the YAWL framework has been extended
with an ad-hoc load balancer for the distribution of
workload over multiple YAWL engines, so as to be
used in the cloud [26].

RapidMiner1 is a powerful commercial platform
through which users can exploit many analytics tools
to visually create predictive analytics workflows. The
system provides full integration with Hadoop tech-
nologies and MapReduce programming [27]. In fact,
each tool node of a workflow can be a Hadoop
program, and therefore it can exploit the Hadoop par-
allelism. However, differently from DMCF, the visual
elements in RapidMiner do not allow developers to
control and show the parallelism level of each single
tool node and do not permit to configure concurrency
degree at a fine grain.

1. http://rapidminer.com/



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 4

Swift/T [28] is a parallel scripting language that
runs workflows across distributed systems like clus-
ters and Clouds. It provides a script-based language
that models workflows as a set of program invoca-
tions with associated command-line arguments, in-
put and output files. The runtime comprises a set
of services that implement the parallel execution of
Swift/T scripts taking into account data dependen-
cies and external resources availability. Galaxy can
be used as a visual interface to Swift/T according
to three integration schemes [14]: i) A Swift script
is executed as a Galaxy workflow node; the overall
workflow remains sequential, as only the Swift node
is executed in parallel. ii) A Galaxy workflow is
translated into a Swift script; the Swift engine can
execute parallel paths concurrently, but the original
nodes in the Galaxy workflow are not parallel. iii)
The Swift ”foreach” pattern is integrated in Galaxy;
this is equivalent to DMCF’s input sweeping, but
does not support parameter and tool sweeping. To
summarize, the experience reported in [14] shows
that the a posteriori integration of a visual interface
and a script-based language limits the exploitation of
parallelism. Building a visual interface on top of an al-
ready available script-based parallel framework (e.g.,
Galaxy+Swift/T) can lead to the loss of important
features, such as full support to sweeping patterns
and parallelism exploitation at nodes and paths level.

Other systems, broadly related to DMCF, do not
support visual workflow programming, as they em-
ploy script-based languages (e.g., Java in COMPSs
[29]) or data representation models (e.g., XML in
SciCumulus [30]), while others focus on workflow
scheduling optimization [31] [32], which however is
not the main goal of our work.

TABLE 1
Comparison of Cloud-based visual workflow systems.

System Parallelism
level SaaS Underl.

Cloud

Visual
Data/tool
arrays

Galaxy workflow, task Yes IaaS No
Taverna workflow, task No - No
Tavaxy workflow, task Yes IaaS No
Orange4WS workflow, task No - No
Kepler workflow, task No - No
E-Science Cen. workflow Yes IaaS No
ClowdFlows workflow Yes IaaS No
Pegasus workflow, task Yes IaaS No
ASKALON workflow, task No - No
WS-PGRADE workflow, task Yes IaaS No
YAWL workflow, task No IaaS Tool arr.
RapidMiner workflow, task Yes IaaS No
Swift/T+Galaxy workflow, task Yes IaaS No
DMCF workflow, task Yes PaaS Yes

Table 1 compares related Cloud-based visual work-
flow management systems with DMCF (last row in
the table). For each system, the table indicates: (i) the
parallelism level it provides; (ii) whether or not it is

provided as a Software as a Service (SaaS); (iii) the
service model of the underlying Cloud; (iv) whether
or not it supports visual data and tool arrays.

For comparison purposes, we distinguish two types
of parallelism levels: workflow parallelism, which refers
to the ability of executing multiple workflows concur-
rently; task parallelism, which is the ability of executing
multiple tasks of the same workflow concurrently.
Most systems support both workflow and task paral-
lelisms, except for ClowdFlows and E-Science Central
that focus on workflow parallelism only.

The second column shows which systems are pro-
vided according with the SaaS model. The SaaS
model is implemented by Galaxy, Tavaxy, E-Science
Central, ClowdFlows, Pegasus, WS-PGRADE, Rapid-
Miner, Swift/T+Galaxy and DMCF, whereas Taverna,
Orange4WS, Kepler, ASKALON and YAWL are imple-
mented as desktop applications that can invoke Cloud
software exposed as Web Services.

The third column, which applies to the system
provided as SaaS, indicates the service model of
the underlying Cloud platform or infrastructure.
All the SaaS systems are implemented on top of
Infrastructure-as-a-Service (IaaS) Clouds, except for
DMCF that is designed to run on top of Platform-
as-a-Service (PaaS) Clouds.

The last column, shows that DMCF is the only
system supporting both visual data and tool arrays.
As mentioned earlier, visual data and tool array for-
malisms allow users to design parallel data mining
workflows in a more compact way, and are effective
to fork the concurrent execution of many parallel tasks
to Cloud resources, thus improving scalability.

In order to show the advantages of using data and
tool arrays compared to visual workflow languages
that do not support this feature, Figure 1 shows a real
workflow taken from [33] designed using both Galaxy
(as an example of system that does not support visual
arrays) and DMCF. The workflow analyzes in parallel
a dataset using three instances of the RXLR Motif tool,
where each instance is run with different parameters.
The results of the three RXLR Motif instances are
cleaned by three filtering tools. Then, the filtered
outputs are joint and presented to the user through
a Venn diagram.

By comparing the Galaxy version (Figure 1(a)) with
the DMCF version (Figure 1(b)), it is evident DMCF
workflows are more compact compared to those de-
signed using other visual formalisms that oblige de-
velopers to replicate node chains to obtain the same
semantic. In fact, imagine that a user wants to run a
higher number of RXLR Motifs tools (e.g., 20) on the
same data: using Galaxy, the number of workflow’s
nodes and the space required to design it would in-
crease proportionally with the number of tools; using
DMCF, the workflow remains graphically identical,
because only the size of data and tool arrays needs
to be changed. Moreover, arrays allow implementing



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 5

task parallelism more intuitively, because the array
cardinality automatically determines the parallelism
degree at runtime.

Data and tool arrays also improve generality of
workflows and therefore their reusability. In fact,
once defined, a workflow can be instantiated many
times not only changing the input data or the tools
(as in the other workflow formalisms), but also the
parallelism level by specifying a different cardinality
of the data/tool arrays. Finally, thanks to data and
tool arrays, we are able to easily implement workflow
patterns that are very useful in data mining applica-
tions (parameter sweeping, data sweeping and data
aggregation) as discussed in Section 5.1.

To summarize, Table 1 shows that DMCF is the
only SaaS system featuring both workflow/task par-
allelisms and support to visual data and tool arrays.
Furthermore, DMCF is the only system designed to
run on top of a PaaS. A key advantage of this ap-
proach is the independence from the infrastructure
layer. In fact, the DMCF’s components are mapped
into PaaS services, which in turn are implemented on
infrastructure components. Changes to the Cloud in-
frastructure affect only the infrastructure/platform in-
terface, which is managed by the Cloud provider, and
therefore DMCF’s implementation and functionality
are not influenced. In addition, the PaaS approach
facilitates the implementation of the system on a
public Cloud, which free final users and organizations
from any hardware and OS management duties.

3 DATA MINING CLOUD FRAMEWORK

This section provides a conceptual description of the
Data Mining Cloud Framework that is independent
from specific Cloud implementations.

3.1 System model
The model introduced here provides an abstraction to
describe the characteristics of applications as they are
seen in our system.

A workflow instance is modeled as a tuple:

workflow = 〈workflowId, userId, workflowStatus,
taskList〉

where workflowId is the workflow identifier, userId is
the identifier of the user who submitted the workflow,
workflowStatus represents the status of the workflow
(new, ready, running, done, or failed), and taskList
contains the tasks that form the workflow. For brevity,
in the remainder of the paper we will use the term
”workflow” in place of ”workflow instance”.

A task is modelled as a tuple:

task = 〈taskId, workflowId, tool, taskStatus, dependen-
cyList〉

where taskId is the task identifier, workflowId is the
identifier of the workflow the task belongs to, tool is

a reference to the tool to be executed, taskStatus is
the task status (new, ready, running, done, or failed),
and dependencyList contains the identifiers of the other
tasks this task depends on. A Task Tj depends on a
task Ti (i.e., Ti → Tj) if Tj can be executed only after
that Ti has successfully completed its execution. Thus,
the dependencyList of a task Tj contains a set of n tasks
T1...Tn such that Ti → Tj for each 1 ≤ i ≤ n.

A tool is defined as follows:

tool = 〈toolId, name, executable, libraryList, parame-
terList〉

where toolId is the tool identifier, name is a descrip-
tive name for the tool, executable is a reference to
the executable (program or script) that launches the
tool, libraryList contains the references of the required
libraries, and parameterList is a list of parameters
used to specify input data, output data, and other
configurations.

A parameter is defined as a tuple:

parameter = 〈name, description, parType, type, flag,
mandatory, value〉

where name is the parameter name, description is a
parameter description, parType specifies whether it
is an input, output, or configuration parameter, type
specifies the parameter type (e.g., file, string, integer,
etc.), flag is a string that precedes the parameter value
to allow its identification in a command line invo-
cation, mandatory is a boolean that specifies whether
the parameter is mandatory or not, value contains the
parameter value.

For each tool element included in a workflow, an
associated descriptor, expressed in JSON format, is
included in the environment of the user who is devel-
oping the workflow. An example of JSON descriptor
for a data classification tool is presented in Figure 2.

"J48": {
"libraryList": ["java.exe","weka.jar"],
"executable": "java.exe -cp weka.jar
weka.classifiers.trees.J48",

"parameterList":[{
"name": "dataset", "flag": "-t",
"mandatory": true, "parType": "input",
"type": "file",
"description": "Input dataset"

},{
"name": "confidence", "flag": "-C",
"mandatory": false, "parType": "conf",
"type": "real",
"description": "Confidence value",
"value": "0.25"

},{
"name": "model", "flag": "-d",
"mandatory": true, "parType": "output",
"type": "file",
"description": "Output model"}]}

Fig. 2. Example of tool descriptor in JSON format.

The JSON descriptor of a new tool is created auto-
matically through a guided procedure, which allows
users to specify all the needed information for invok-
ing the tool (executable, inputs and outputs, etc.).



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 6

3.2 General architecture
The architecture of DMCF includes different kinds
of components that can be grouped into storage and
compute components (see Figure 3).

Fig. 3. Architecture of the Data Mining Cloud Frame-
work.

The storage components include:
• A Data Folder that contains data sources and the

results of data analysis processes. Similarly, a
Tool Folder contains libraries and executable files
for data selection, pre-processing, transformation,
data mining, and results evaluation.

• Workflow Table, Tool Table and Task Table contain
metadata information associated with workflows,
tools, and tasks.

• The Task Queue contains the tasks ready for exe-
cution.

The compute components are:
• A pool of Virtual Compute Servers, which are in

charge of executing the data analysis tasks.
• A pool of Virtual Web Servers host the Web-based

user interface.
The user interface provides access to three functional-
ities: i) App submission, which allows users to define
and submit data analysis applications; ii) App monitor-
ing, which is used to monitor the status and access re-
sults of the submitted applications; iii) Data/Tool man-
agement, which allows users to manage input/output
data and tools. All the storage and compute compo-
nents are executed on the infrastructure (i.e., network
of physical machines) provided by the Cloud plat-
form.

3.3 Execution mechanisms
Design and execution of a data analysis application in
DMCF is a multi-step process (see numbered arrows
in Figure 3):

1) The user accesses the Website and designs the
workflow through a Web-based interface.

2) After workflow submission, the system creates
a set of tasks and inserts them into the Task
Queue.

3) Each idle Virtual Compute Server picks a task
from the Task Queue, and concurrently executes
it.

4) Each Virtual Compute Server gets the input
dataset from its location. To this end, a file trans-
fer is performed from the Data Folder where
the dataset is located, to the local storage of the
Virtual Compute Server.

5) After task completion, each Virtual Compute
Server puts the result on the Data Folder.

6) The Website notifies the user whenever each task
has completed, and allows her/him to access the
results.

The set of tasks created on the second step depends
on how many tools are invoked within the workflow;
initially, only the workflow tasks without dependen-
cies are inserted into the Task Queue. Each virtual
compute server picks and executes the task from the
task queue following a FIFO policy. It is important
to say that in our model all the virtual compute
servers have identical capabilities, because the virtual
machines provided by the cloud infrastructure are
homogeneous (same CPU, memory and storage).

The actions performed by each Virtual Compute
Server are described in Algorithm 1. The Virtual Com-
pute Server cyclically checks whether there are tasks
ready to be executed in the Task Queue. If so, the first
task is taken from the queue (line 3) and its status
is changed to ’running’ (line 4). Two local folders
are created to temporarily stage input data and tools,
which include both executables and libraries (lines 5-
6). Input and output lists are created on lines 7-13.
Then, the transfer of all the needed input resources
(files, executables and libraries) is performed (lines
14-18). At line 19, the Virtual Compute Server locally
executes the task and waits for its completion.

If the task is ’done’ (line 20), the output results are
copied to a remote data folder (lines 21-22), and the
task status is changed to ’done’ also in the Task Table
(line 23). Then, for each wfTask that belongs to the
same workflow of task (line 24), if wfTask has a depen-
dency with task (line 25), that dependency is deleted
(line 26). If wfTask remains without dependencies (line
27), it becomes ’ready’ and is added to the Task Queue
(lines 28-29). If the task fails (line 30), all the tasks that
directly or indirectly depend on it will be marked as
’failed’ (lines 31-40). Finally, the task is removed from
the Task Queue (line 41), and the local data and tools
folders are deleted (lines 42-43).

4 IMPLEMENTING THE DATA MINING CLOUD
FRAMEWORK

We implemented a version of the Data Mining Cloud
Framework using the Microsoft Azure2 platform. The
choice of Azure was guided by the need of satisfying

2. http://azure.microsoft.com



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 7

Algorithm 1: Virtual Compute Server operations.
1 while true do
2 if TaskQueue.isNotEmpty() then
3 task ← TaskQueue.getTask();
4 TaskTable.update(task, ‘running’);
5 localDataFolder = <local data folder>;
6 localToolFolder = <local tool folder>;
7 inputList = <empty list>;
8 outputList = <empty list>;
9 foreach parameter in task.tool.parameterList do

10 if parameter.parType = ‘input’ then
11 inputList.add(parameter);

12 else if parameter.parType = ‘output’ then
13 outputList.add(parameter);

14 foreach input in inputList do
15 transfer(input, DataFolder, localDataFolder);

16 transfer(task.tool.executable, ToolFolder,
localToolFolder);

17 foreach library in task.tool.libraryList do
18 transfer(library, ToolFolder, localToolFolder);

19 taskStatus ← execute(task, localDataFolder,
localToolFolder);

20 if taskStatus = ‘done’ then
21 foreach output in outputList do
22 transfer(output, localDataFolder, DataFolder);

23 TaskTable.update(task, ‘done’);
24 foreach wfTask in

TaskTable.getTasks(task.workflowId) do
25 if wfTask.dependencyList.contains(task) then
26 wfTask.dependencyList.remove(task);
27 if wfTask.dependencyList.isEmpty() then
28 TaskTable.update(wfTask, ‘ready’);
29 TaskQueue.addTask(wfTask);

30 else
31 failedTasks = <empty set>;
32 tasksToAnalyze = <empty set>;
33 tasksToAnalyze.add(task);
34 while tasksToAnalyze.isNotEmpty() do
35 tmpTask = tasksToAnalyze.remove();
36 TaskTable.update(tmpTask, ‘failed’);
37 failedTasks.add(tmpTask);
38 foreach wfTask in

TaskTable.tasks(task.workflowId) do
39 if failedTasks.notContains(wfTask) &&

wfTask.dependencyList.contains(tmpTask)
then

40 tasksToAnalyze.add(wfTask);

41 TaskQueue.remove(task);
42 delete(localDataFolder);
43 delete(localToolFolder);

44 else
45 sleep(sleepTime);

three main requirements: i) the use of a PaaS system,
since implementing the execution mechanisms of our
framework does not require the low level facilities
provided by a IaaS; ii) the use of a platform whose
components match the needs of the components de-
fined in our architecture; iii) the use of a public
Cloud, to free final users and organizations from any
hardware and OS management duties.

Microsoft Azure satisfies all the requirements
above, since it is a public PaaS platform whose com-
ponents fully fit with those defined by DMCF. In
the following, we shortly outline the Azure platform,
and describe how the generic components of DMCF’s
architecture are mapped to the Azure’s components.
Finally, we discuss how DMCF could be implemented
using other Cloud systems.

4.1 Microsoft Azure
Azure is an environment and a set of Cloud ser-
vices that can be used to develop Cloud-oriented
applications, or to enhance existing applications with
Cloud-based capabilities. The platform provides on-
demand compute and storage resources exploiting the
computational and storage power of the Microsoft
data centers. Azure includes three layers:

• Compute is the computational environment to
execute Cloud applications. Each application is
structured into roles: Web role, for Web-based
applications; Worker role, for batch applications;
VM role, for virtual-machine images.

• Storage provides scalable storage to manage: bi-
nary and text data (Blobs), non-relational ta-
bles (Tables), relational databases (SQL Databases),
queues for asynchronous communication be-
tween components (Queues) and virtual storage
(Disks).

• Fabric controller whose aim is to build a network
of interconnected nodes from the physical ma-
chines of a single data center. The Compute and
Storage services are built on top of this compo-
nent.

We exploited these components and mechanisms to
implement DMCF, as described in the next section.

4.2 Implementing the system on Azure
As shown in Figure 3, the architecture of our frame-
work distinguishes its high-level components into
two groups, Storage and Compute, following the same
approach followed by Azure and other Cloud plat-
forms. In this way, we were able to implement the
data and computing components of DMCF by fully
exploiting the Storage and Compute components and
functionalities provided by Azure.

For the Storage components, we adopted the fol-
lowing mapping with Azure: i) Data Folder and Tool
Folder are implemented as Azure’s Blob containers;
ii) Workflow Table, Tool Table and Task Table, are im-
plemented as non-relational Tables; iii) Task Queue is
implemented as an Azure’s Queue. For the Compute
components, the following mapping was adopted: i)
Virtual Compute Servers are implemented as Worker
Role instances; ii) Virtual Web Servers are implemented
as Web Role instances.

Each Worker Role instance executes the operations
described in Algorithm 1. This requires file transfers
to be performed when input/output data have to
be moved between storage and servers. To reduce
the impact of data transfer on the overall execution
time, DMCF exploits the Azure’s Affinity Group fea-
ture, which allows Data Folder and Virtual Compute
Servers to be located near to each other in the same
data center for optimal performance.

At least one Virtual Web Server runs continuously
in the Cloud, as it serves as user front-end for DMCF.



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 8

Moreover, the user indicates the minimum and max-
imum number of Virtual Compute Servers he/she
wants to use. DMCF exploits the auto-scaling fea-
tures of Microsoft Azure that allows spinning up or
shutting down Virtual Compute Servers, based on the
number of tasks ready for execution in the DMCFs
Task Queue.

4.3 Implementing the system on other Clouds
Although the current implementation of DMCF is
based on Azure, it has been designed to abstract
from specific Cloud platforms. In fact, the DMCF
architecture has been designed in an abstract way to
be implemented on top of other Cloud systems, such
as, for instance, the popular Amazon Web Services
(AWS)3. AWS offers compute and storage resources
in the form of Web services, which comprise com-
pute services, storage services, database services, and
queuing services. If we consider AWS as a target
Cloud platform, the DMCFs components could be
implemented on the AWS’s components as follows:
i) Data Folder and Tool Folder stored on S3 (AWS’s
storage service); ii) Workflow Table, Tool Table, and Task
Table stored as non-relational tables using DynamoDB
(AWS’s NoSQL database); iii) Task Queue using the
Simple Queue Service (AWS’s queuing system); iv)
Virtual Compute Servers and Virtual Web Servers on top
of EC2 (AWS’s compute service).

Other than on well-known public Cloud platforms,
the DMCF could be implemented on top of a pri-
vate IaaS system (e.g., OpenStack4) using various
open source software for its components. In this sce-
nario, the DMCF components could be implemented
as follows: i) Data Folder and Tool Folder as FTP
servers (e.g., using Filezilla); ii) Workflow Table, Tool
Table, and Task Table as non-relational Tables (e.g.,
MongoDB); iii) Task Queue using a message-oriented
middleware (e.g., Java Message Service); iv) Virtual
Compute Servers as batch applications (e.g., Java appli-
cations) and Virtual Web Servers as Web servers (e.g.,
Apache/Tomcat).

5 PROGRAMMING DATA ANALYSIS WORK-
FLOWS

In this section we focus on data analysis work-
flow programming by describing workflow formal-
ism, composition and execution in DMCF.

5.1 Workflow formalism
The DMCF includes a visual programming interface
and its services to support the composition and exe-
cution of data analysis workflows. Workflows provide
a paradigm that may encompass all the steps of dis-
covery based on the execution of complex algorithms

3. http://aws.amazon.com
4. http://www.openstack.org

and the access and analysis of scientific data. In data-
driven discovery processes, data analysis workflows
can produce results that can confirm real experiments
or provide insights that cannot be achieved through
laboratory experiments.

A visual programming language, called VL4Cloud
(Visual Language for Cloud), allows users to develop
applications by programming the workflow compo-
nents graphically. As discussed in Section 2 there are
several systems for scientific workflow programming,
but we chose to define VL4Cloud as a new language
to provide visual elements (data/tool arrays) and
patterns (parameter/input/tool sweeping) that are
specific to parallel data mining, and to ensure full in-
tegration of the programming interface with DMCF’s
engine. There are also business workflow languages
like BPMN [34] that provide facilities for the execution
of business processes including human tasks, fault
handling, transactions, or quality of service features.
However, as argued by Sonntag et al. [35], most of
the control flow structures of business workflows,
including those provided by BPMN, are not required
to define data analysis applications.

VL4Cloud workflows are directed acyclic graphs
whose nodes represent resources and whose edges
represent dependencies among the resources. Work-
flows include two types of nodes. Data node rep-
resents an input or output data element; two sub-
types exist: Dataset representing a data collection, and
Model representing a model generated by a data anal-
ysis tool (e.g., a decision tree). Tool node represents
a tool performing any kind of operation that can be
applied to a data node (splitting, mining, etc.).

The nodes can be connected with each other
through direct edges, establishing specific depen-
dency relationships among them. When an edge is
being created between two nodes, a label is automat-
ically attached to it representing the kind of relation-
ship between the two nodes. For example, Figure 4
shows a J48 Tool (an implementation of the C4.5
algorithm [36] provided by the Weka toolkit [37])
that takes in input a TrainSet and generates a Model.
For each Tool node, input/output connections are
allowed on the basis of the Tool descriptor present
in ToolTable.

TrainSet J48 Model

dataset model

Fig. 4. Example of a tool connected to an input dataset
and an output model.

Data and tool nodes can be added to the workflow
singularly or in array form. A data array is an ordered
collection of input/output data elements, while a tool
array represents multiple instances of the same tool.

Several workflow patterns can be implemented
with VL4Cloud. Figure 5 shows four examples of



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 9

NetLog Partitioner

dataset datasetParts

NetLogPart[16]

(a) Data partitioning.

ModelChooser

models bestModel

Model[8] BestModel

(b) Data aggregation.

TrainSet J48[5]
PS: confidence

Model[5]

dataset model

(c) Parameter sweeping.

TrainSet[16] J48[16]
PS: dataset

Model[16]

dataset model

(d) Input sweeping.

Fig. 5. Visual workflow patterns.

(a) Partitioning the input dataset.

(b) Partitioning the train set and analyzing each train set part.

(c) Classifying the test set and voting.

Fig. 6. Example of workflow composition.

patterns that can be defined: data partitioning, data
aggregation, parameter sweeping and input sweep-
ing.

The data partitioning pattern produces two or more
output data from an input data element, as in Fig-
ure 5(a), where a Partitioner tool divides a dataset
into a number of splits. The data aggregation pattern
generates one output data from multiple input data,
as in Figure 5(b), where a ModelChooser tool takes
as input eight data mining models and chooses the
best one based on some evaluation criteria. Parameter
sweeping is a data analysis pattern in which a dataset
is analyzed by multiple instances of the same tool
with different parameters, as in the example shown
in Figure 5(c). In this example, a training set is pro-
cessed in parallel by five instances of the J48 data
classification tool to produce the same number of
data mining models. The J48 instances differ each
other by the value of a single parameter, the confidence
factor, which has been configured (through the visual

interface) to range from 0.1 to 0.5 with a step of 0.1.
Finally, input sweeping is a pattern in which a set
of input data is analyzed independently to produce
the same number of output data. It is similar to
the parameter sweeping pattern, with the difference
that in this case the sweeping is done on the input
data rather than on a tool parameter. An example of
input sweeping pattern is represented in Figure 5(d),
where 16 training sets are processed in parallel by 16
instances of J48, to produce the same number of data
mining models.

Van Der Aalst et al. [38] proposed a formal descrip-
tion of several control-flow workflow patterns that
can be used to give a reference for the possibilities that
a workflow management systems can provide. Taking
[38] as a reference, DMCFs visual language fully cov-
ers the sequence, parallel split and synchronization
workflow patterns. However, compared to existing
visual workflow languages, DMCF has a higher de-
gree of flexibility on the definition of parallel patterns



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 10

(a) Workflow running.

(b) Workflow completed.

Fig. 7. Workflow execution.

(i.e., parameter, input, and tool sweeping), which can
be combined together in multiple ways by exploiting
the data and tool array formalisms provided by our
language.

5.2 Workflow composition
In order to present the main features of the visual
programming interface of the DMCF, we use as an
example a data analysis application composed of sev-
eral sequential and parallel steps.

The example application analyzes a dataset by us-
ing n instances of the J48 classification algorithm that
work on n partitions of the training set and generate n
classification models. By using the n generated mod-
els and the test set, n predictors produce in parallel n
classified datasets. In the final step of the workflow, a
voter generates the final classification by assigning a
class to each data item. This is done by choosing the
class predicted by the majority of the models [39].

Figure 6(a) shows a snapshot of the visual interface
with the first step of the workflow, where the original
dataset is split in training and test set by a partitioning
tool. Since a set of parameters is associated with
each workflow node, the interface allows users to
configure them through a pop-up panel. For example,
the central part of Figure 6(a) shows the configuration
panel for the partitioning tool. In this case, only one
parameter can be specified, namely which percentage
of the input dataset must be used as training set.

Figure 6(b) shows how the training set is partitioned
into 16 parts using another partitioning tool. The 16
training sets resulting from the partitioning are repre-
sented in the workflow as a single data array node, la-
beled as TrainSetPart[16]. Then, the workflow specifies
that the 16 training sets must be analyzed in parallel
by 16 instances of the J48 classification algorithm, to
produce the same number of classification models. A
tool array node, labeled as J48[16], is used to represent
the 16 instances of the J48 algorithm, while another

data array node, labeled as Model[16], represents the
models generated by the classification algorithms. In
practice, this part of the workflow specifies that J48[i]
takes in input TrainSetPart[i] to produce Model[i], for
1 ≤ i ≤ 16.

Figure 6(c) shows the complete workflow, which
classifies the test set using the 16 models generated
previously. The classification is performed by 16 pre-
dictors that run in parallel to produce 16 classified test
sets. In more detail, Predictor[i] takes in input TestSet
and Model[i] to produce ClassTestSet[i], for 1 ≤ i ≤ 16.
Finally, the 16 classified test sets are passed to a
voter that produces the final dataset, labeled as Final-
ClassTestSet. When the workflow design is complete,
the workflow execution can start and it proceeds as
detailed in the next section.

5.3 Workflow execution
The workflow defined in the previous section includes
five tools (PartitionerTT, Partitioner, J48, Predictor,
and Voter), which are translated into five groups of
tasks, indicated as {T1...T5}, as shown in Figure 6(c).

The execution order of the workflow tasks depends
on the dependencies specified by the workflow edges.
To ensure the correct execution order, to each task is
associated a list of tasks that must be completed before
starting its execution. Figure 8 shows a possible order
in which the tasks are generated and inserted into
the Task Queue. For each task, the list of tasks to be
completed before its execution is included. Note that
task group T3, which represents the execution of 16 in-
stances of J48, is translated into 16 tasks T3[1]...T3[16].
Similarly, T4 is translated into tasks T4[1]...T4[16].

��

����

��

��

�����

����

����	�

����

�
���

�����������

�
��	�

���������	��

�

��
��������
��	��

Fig. 8. A possible order in which the tasks are gener-
ated and inserted into the Task Queue.



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 11

According with the tasks dependencies specified
by the workflow, the execution of T2 will start after
completion of T1. As soon as T2 completes, the 16
tasks that compose T3 can be run concurrently. Each
task T4[i] can be executed only after completion of
both T2 and T3[i], for 1 ≤ i ≤ 16. Finally T5 will start
after completion of all tasks that compose T4.

Figure 7(a) shows a snapshot of the workflow taken
during its execution. The figure shows that Parti-
tionerTT has completed the execution, Partitioner is
running, while the other tools are still submitted.
Figure 7(b) shows the workflow after completion of
its execution. Some statistics about the overall appli-
cation are shown on the upper left part of the window.
In this example, it is shown that, using 16 virtual
machines, the workflow completed 430 seconds after
its submission, whereas the total execution time (i.e.,
the sum of the execution times of all the tasks) is 4424
seconds.

6 EXPERIMENTAL EVALUATION

We present some experimental performance results
obtained executing two VL4Cloud workflows with
DMCF. The first workflow represents an ensemble
learning application, while the second workflow rep-
resents a parallel classification application. The main
goal of the first workflow is to illustrate the VL4Cloud
capability of expressing a complex data analysis pro-
cess, while the second workflow shows the good
scalability that can be achieved with our approach.
The Cloud environment used for the experimental
evaluation was composed by 128 virtual servers, each
one equipped with one dual-core 1.66 GHz CPU, 3.5
GB of memory, and 135 GB of disk space.

6.1 Ensemble learning workflow

This workflow is the implementation of a multi-class
cancer classifier based on the analysis of genes, using
an ensemble learning approach [39]. The input dataset
is the Global Cancer Map (GCM)5, which contains the
gene expression profiles of 280 samples representing
14 common human cancer classes. For each sample
is reported the status of 16,063 genes and the type of
tumor (class label). The GCM dataset is available as
a training set containing 144 instances and as a test
set containing 46 instances. The goal is to classify an
unlabeled dataset (UnclassGCM) composed by 20,000
samples, divided in four parts.

The workflow starts by analyzing the training set
using l instances of the J48 classification tool and m
instances of the JRip classification tool (Weka’s im-
plementation of the Ripper [40] algorithm). The l J48
instances are obtained by sweeping the confidence and
the minNumObj (minimum number of instances per

5. http://eps.upo.es/bigs/datasets.html

leaf) parameters, while the m JRip instances are ob-
tained by sweeping the numFolds (number of folders)
and seed parameters. The resulting l+m classification
models (classifiers) are passes as input to l +m eval-
uators, which produce an evaluation of each model
against the test set. Then, k unclassified datasets are
classified using the l+m models by k(l+m) predictors.
Finally, k voters take in input l+m model evaluations
and the k(l + m) classified datasets, producing k
classified datasets through weighted voting.

(a) First workflow for models creation and evaluation.

(b) Second workflow to classify 4 unlabeled datasets.

Fig. 9. Ensemble learning application.

The first workflow is shown in Figure 9(a). The
input training set, GCM-train, is analyzed by: i) 9
instances of the J48 classification algorithm, obtained
by sweeping the confidence and the minNumObj pa-
rameters; ii) 9 instances of the JRip classification al-
gorithm, obtained by sweeping the numFolds (number
of folders) and seed parameters. Each instance of J48,
J48[i], generate a model (Model1[i]) that is passed as
input to an Evaluator to generate an evaluation of the
model (EvModel1[i]). In the same way, each instance
of JRip, JRip[j], generates a model (Model2[j]) that
is passed as input to an Evaluator to generate an
evaluation of the model (EvModel2[j]).

At this point, we can use our ensemble classi-
fier to classify new datasets. This is shown in the
second workflow (see Figure 9(b)). We created an
unlabeled dataset composed by 20,000 samples, Un-
labGCM[4], divided in four parts. Each part is classi-
fied by weighted majority voting using the models
(Model[18]) and the corresponding evaluations (Ev-
Model[18]) generated by the first workflow.

In general, the workflow is composed of 2(l+m)+
k(l+m)+k tasks, which are related with each other as
specified by the dependency graph shown in Figure
10. In the specific example (with l = 9, m = 9, k = 4)
the number of tasks is 112.



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 12

Vot[0]

J48[0]

J48[l-1]

Voter

Ev[0]

Ev[l-1]

J48/JRip Evaluator

P[0][0] P[k][0]

JRip[0] Ev[l]

JRip[m-1] Ev[l+m-1]

P[0][l-1] P[k][l-1]

P[0][l] P[k][l]

P[0][l+m-1] P[k][l+m-1]

Vot[k]

Predictor

Fig. 10. Task dependency graph associated with the
ensemble learning workflows in Figure 9.

The example above demonstrates the flexibility of
VL4Cloud. In addition, the experimental evaluation of
the workflow using DMCF, conducted using 19 virtual
servers, showed a significant reduction of turnaround
time compared to that achieved by the sequential ex-
ecution. In particular, the turnaround time decreased
from about 162 minutes using a single server, to about
11 minutes using 19 servers, which corresponds to a
speedup of about 14.7.

6.2 Parallel classification workflow

We evaluate here the scalability obtained executing a
larger version of the workflow presented in Section
5.1 (see Figure 6(c)), where n (i.e., number of training
set partitions) is increased to 128. The workflow is
composed of 3 + 2n tasks, whose dependency graph
is shown in Figure 11. In the specific example the total
number of tasks is 259.

J48[0] 

J48[1] 

J48[n-2] 

J48[n-1] 

PartitionerTT Partitioner 

J48 Predictor 

Voter 

P[0] 

P[1] 

P[n-2] 

P[n-1] 

Fig. 11. Task dependency graph associated with the
parallel classification workflow.

In order to evaluate the system with increasing
workloads, we generated three datasets with size of
5 GB, 10 GB and 20GB from the KDD Cup 1999’s
dataset6, which contains a wide variety of simulated
intrusion records in a military network environment.

6. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99

Figure 12(a) shows the turnaround times of the
workflow, obtained varying the number of virtual
servers used to run it on the Cloud from 1 (se-
quential execution) to 128 (maximum parallelism) and
the dataset size. For the smallest dataset (5 GB),
the turnaround time decreases from about 46 hours
(about 2 days) on a single server, to about 33 minutes
using 128 servers. For the medium-size dataset (10
GB), the turnaround time decreases from 115 hours
to 1.2 hours, while for the largest dataset (20 GB), the
turnaround time ranges from 257 hours (more than 10
days) to 2.7 hours. These are evident and significant
reductions of time, which prove the system scalability.

The scalability achieved using DMCF can be further
evaluated through Figure 12(b), which illustrates the
relative speedup obtained by using up to 128 servers.
For the 5 GB dataset, the speedup passes from 7.3
using 8 servers to 84.7 using 128 servers. For the
10 GB dataset, the speedup ranges from 7.4 to 91.9.
Finally, with the 20 GB dataset, we obtained a speedup
ranging from 7.5 to 95.7. This is a very positive result,
taking into account that some sequential parts of the
implemented application (namely, partitioning and
voting) cannot run in parallel.

Figure 12(c) shows the application efficiency, calcu-
lated as the speedup divided by the number of used
servers. As shown in the figure, for the largest dataset
the efficiency on 32 servers is equal to 0.9 whereas on
128 servers it is equal to 0.75. Thus in this case, 75% of
the computing power of each used server is exploited.

We also evaluated the overhead introduced by
DMCF. We define as overhead the time required by
the system to perform preliminary operations (e.g.,
getting the task from the Task Queue, downloading
libraries and input files from the Cloud storage) and
final operations (e.g., updating the Task Table, upload-
ing the output files to the Cloud storage) related to the
execution of each workflow task. In Algorithm 1, the
preliminary operations are those in lines 3-18, while
the final operations are in lines 20-43. Figure 12(d)
shows the overhead time of the workflow, compared
with the turnaround time of the same workflow exe-
cuted on 128 servers. We observe that the overhead is
a small fraction of the turnaround time. For example,
the overhead is equal to 50 minutes on a turnaround
time of 46 hours considering the smallest dataset,
while with the largest dataset the overhead is 2.5
hours over 257 hours. This means that the overhead
lies in the range of 1%-1.7% of the total execution time.

6.3 Scalability remarks

To summarize, we present in Table 2 the speedups
achieved by executing some data analysis applica-
tions with DMCF. Besides the speedups of the en-
semble learning and parallel classification workflows
described earlier in this section, the table reports
the speedups achieved by the following applications:



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 13

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

1 8 16 32 64 128

T
u
rn

a
ro

u
n
d
 t
im

e
 (

s
e
c
.)

Number of servers

 5GB
10GB
20GB

(a) Turnaround time vs #servers.

1
8

16

32

64

128

1 8 16 32 64 128

S
p
e
e
d
u
p

Number of servers

 5GB
10GB
20GB

(b) Speedup vs #servers.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 8 16 32 64 128

E
ff
ic

ie
n
c
y

Number of servers

 5GB
10GB
20GB

(c) Efficiency vs #servers.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 5GB 10GB 20GB

T
im

e
 (

s
e
c
.)

Dataset size

turnaround time
overhead time

(d) Overhead time vs data size.

Fig. 12. Parallel classification workflow.

i) Parallel clustering [41], where multiple instances
of a clustering algorithm are executed concurrently
on a large census dataset to find the most accurate
data grouping; ii) Association rule analysis [8], which
is a workflow for association rule analysis between
genome variations and clinical conditions of a group
of patients; iii) Trajectory mining [9], a data analysis
workflow for discovering patterns and rules from
trajectory data of vehicles in a wide urban scenario.

TABLE 2
Speedup values of some DMCF applications.

Application #tasks #servers Speedup

Parallel clustering [41] 16 16 9.0
Association rules analysis [8] 53 16 15.2
Trajectory mining [9] 131 64 49.3
Ensemble learning (Sec. 6.1) 112 19 14.7
Parallel classification (Sec. 6.2) 259 128 95.7

The best speedup is achieved in applications where
many tasks can be run in parallel, and the concurrent
tasks are homogeneous in terms of execution times.
This is the case of the association rule analysis, where,
after a short sequential task, several data mining tasks
of similar duration are executed in parallel.

An example in which task heterogeneity limits scal-
ability is the parallel clustering application, where the
tasks in charge of grouping data into a high number
of clusters are much slower than those looking for a
lower number of clusters. Therefore, in this case the
speedup does not increase linearly with the number
of servers used, because the turnaround time is bound
to the execution time of the slowest task instances.

In larger workflows, even if tasks are not perfectly
homogeneous, a good scalability can be achieved
thanks to the better server utilization deriving by the
higher number of tasks to be executed in parallel. This
is the case of the trajectory mining workflow, where
we achieved a speedup of 49.3 on 64 servers despite
a significant variability in tasks execution times.

The experimental results demonstrate the good scal-
ability achieved using DMCF to execute different
types of data analysis workflows on a Cloud platform.

7 CONCLUSIONS

Cloud systems can be used as scalable infrastructures
to support high-performance platforms for data anal-
ysis applications. Based on this vision, we designed
DMCF for large-scale data analysis on the Cloud.
The main contribution of DMCF is the integration of
different hardware/software solutions for high-level
programming, management and execution of parallel
data mining workflows.

We evaluated the performance of DMCF through
the execution of workflow-based data analysis ap-
plications on a pool of virtual servers hosted by a
Microsoft Cloud data center. The experimental results
demonstrated the effectiveness of the framework, as
well as the scalability that can be achieved through the
execution of data analysis applications on the Cloud.

Besides performance considerations, we point out
that the main goal of DMCF is providing an easy-to-
use SaaS interface to reliable data mining algorithms,
thus enabling end-users to focus on their data analysis
applications without worrying about low level com-
puting and storage details, which are transparently
managed by the system.

REFERENCES

[1] A. Burd et al., “Pi of the sky-all-sky, real-time search for fast
optical transients,” New Astronomy, vol. 10, no. 5, pp. 409 –
416, 2005.

[2] O. Rubel, C. Geddes, M. Chen, E. Cormier-Michel, and
E. Bethel, “Feature-based analysis of plasma-based particle
acceleration data,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 20, no. 2, pp. 196–210, 2014.

[3] T. Tucker, M. Marra, and J. Friedman, “Massively parallel
sequencing: The next big thing in genetic medicine,” The
American Journal of Human Genetics, vol. 85, no. 2, pp. 142–154,
2009.

[4] The SAGE Handbook of Social Network Analysis, 0th ed. SAGE
Publications Ltd, 2014.

[5] T. Hey, S. Tansley, and K. Tolle, Eds., The Fourth Paradigm:
Data-Intensive Scientific Discovery. Microsoft Research, 2009.

[6] D. Talia and P. Trunfio, “How distributed data mining tasks
can thrive as knowledge services,” Commun. ACM, vol. 53,
no. 7, pp. 132–137, 2010.

[7] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey,
B. Berriman, and J. Good, “On the use of cloud computing
for scientific workflows,” in eScience, 2008, 2008, pp. 640–645.



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2589243, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. Y, MAY 2015 14

[8] G. Agapito, M. Cannataro, P. H. Guzzi, F. Marozzo, D. Talia,
and P. Trunfio, “Cloud4snp: Distributed analysis of snp mi-
croarray data on the cloud,” in Proc. of the ACM Conference on
Bioinformatics, Computational Biology and Biomedical Informatics
2013 (ACM BCB 2013), Washington, DC, USA, 2013, p. 468.

[9] A. Altomare, E. Cesario, C. Comito, F. Marozzo, and D. Talia,
“Trajectory pattern mining over a cloud-based framework for
urban computing,” in Proc. of the 16th Int. Conference on High
Performance Computing and Communications (HPCC 2014), Paris,
France, 2014, pp. 367–374.

[10] D. Talia, “Workflow systems for science: Concepts and tools,”
ISRN Software Engineering, 2013.

[11] M. Bux and U. Leser, “Parallelization in scientific workflow
management systems,” CoRR, 2013.

[12] J. Yu and R. Buyya, “A taxonomy of scientific workflow
systems for grid computing,” SIGMOD Rec., vol. 34, no. 3,
pp. 44–49, 2005.

[13] J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team, “Galaxy:
a comprehensive approach for supporting accessible, repro-
ducible, and transparent computational research in the life
sciences,” Genome Biology, vol. 11, no. 8, p. R86, 2010.

[14] K. Maheshwari, A. Rodriguez, D. Kelly, R. Madduri, J. Woz-
niak, M. Wilde, and I. Foster, “Enabling multi-task compu-
tation on galaxy-based gateways using swift,” in IEEE Int.
Conference on Cluster Computing, 2013, pp. 1–3.

[15] K. Wolstencroft et al., “The Taverna workflow suite: designing
and executing workflows of Web Services on the desktop, web
or in the cloud,” Nucleic Acids Research, vol. 41, pp. 557–561,
2013.

[16] M. Abouelhoda, S. Issa, and M. Ghanem, “Tavaxy: Integrating
taverna and galaxy workflows with cloud computing sup-
port,” BMC Bioinformatics, vol. 13, no. 1, 2012.

[17] V. Podpečan, M. Zemenova, and N. Lavrač, “Orange4ws envi-
ronment for service-oriented data mining,” Comput. J., vol. 55,
no. 1, pp. 82–98, 2012.

[18] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow
management and the kepler system,” Concurr. Comput.: Pract.
Exper., vol. 18, no. 10, pp. 1039–1065, 2006.

[19] H. Hiden, S. Woodman, P. Watson, and J. Cala, “Develop-
ing cloud applications using the e-Science Central platform,”
Philosophical Transactions of the Royal Society A: Mathemati-
cal,Physical and Engineering Sciences, vol. 371, no. 1983, 2013.

[20] J. Kranjc, V. Podpečan, and N. Lavrač, “ClowdFlows: A Cloud
Based Scientific Workflow Platform,” in Machine Learning and
Knowledge Discovery in Databases, ser. Lecture Notes in Com-
puter Science. Springer, 2012, vol. 7524, pp. 816–819.

[21] E. Deelman et al., “Pegasus: A framework for mapping com-
plex scientific workflows onto distributed systems,” Scientific
Programming, vol. 13, no. 3, pp. 219–237, 2005.

[22] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P.
Berman, and P. Maechling, “Data Sharing Options for Scien-
tific Workflows on Amazon EC2,” in High Performance Comput-
ing, Networking, Storage and Analysis (SC), 2010 Int. Conference
for, ser. SC ’10. IEEE, 2010, pp. 1–9.

[23] S. Ostermann, R. Prodan, and T. Fahringer, “Extending grids
with cloud resource management for scientific computing,” in
IEEE/ACM Int. on Grid Computing, 2009, pp. 42–49.

[24] P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann, A. Balasko,
K. Karoczkai, and I. Marton, “Ws-pgrade/guse generic dci
gateway framework for a large variety of user communities,”
J. Grid Comput., vol. 10, no. 4, pp. 601–630, 2012.

[25] W. M. P. Van Der Aalst and T. Hofstede, “Yawl: yet another
workflow language,” Information Systems, vol. 30, no. 4, pp.
245 – 275, 2005.

[26] D. M. Schunselaar, H. Verbeek, H. A. Reijers, and W. M.
van der Aalst, “Yawl in the cloud: Supporting process sharing
and variability,” in Business Process Management Workshops.
Springer Int. Publishing, 2014, pp. 367–379.

[27] J. Dean and S. Ghemawat, “Mapreduce: simplified data pro-
cessing on large clusters,” Commun. ACM, vol. 51, no. 1, pp.
107–113, 2008.

[28] J. Wozniak, T. Armstrong, M. Wilde, D. Katz, E. Lusk, and
I. Foster, “Swift/t: Large-scale application composition via
distributed-memory dataflow processing,” in Cluster, Cloud
and Grid Computing (CCGrid), 2013 13th IEEE/ACM Int. Sym-
posium on, 2013, pp. 95–102.

[29] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. lvarez,
F. Marozzo, D. Lezzi, R. Sirvent, D. Talia, and R. Badia,
“ServiceSs: An interoperable programming framework for the
cloud,” J. of Grid Computing, vol. 12, no. 1, pp. 67–91, 2014.

[30] D. de Oliveira, E. Ogasawara, F. Baiao, and M. Mattoso, “Scicu-
mulus: A lightweight cloud middleware to explore many task
computing paradigm in scientific workflows,” in 3rd IEEE Int.
Conf. on Cloud Computing, 2010, pp. 378–385.

[31] R. Duan, R. Prodan, and X. Li, “Multi-objective game theoretic
schedulingof bag-of-tasks workflows on hybrid clouds,” IEEE
Transactions on Cloud Computing, vol. 2, no. 1, pp. 29–42, 2014.

[32] D. de Oliveira, K. Ocaa, F. Baio, and M. Mattoso, “A
provenance-based adaptive scheduling heuristic for parallel
scientific workflows in clouds,” J. of Grid Computing, vol. 10,
no. 3, pp. 521–552, 2012.

[33] P. J. A. Cock, B. A. Grning, K. Paszkiewicz, and L. Pritchard,
“Galaxy tools and workflows for sequence analysis with ap-
plications in molecular plant pathology,” PeerJ, vol. 1, p. e167,
2013.

[34] T. Allweyer, BPMN 2.0. BoD, 2010.
[35] M. Sonntag, D. Karastoyanova, and E. Deelman, “Bridging the

gap between business and scientific workflows: Humans in the
loop of scientific workflows,” in e-Science (e-Science), 2010 IEEE
Sixth Int. Conference on, 2010, pp. 206–213.

[36] J. R. Quinlan, C4.5: programs for machine learning. Morgan
Kaufmann Publishers Inc., 1993.

[37] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: An update,”
SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, 2009.

[38] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kie-
puszewski, and A. P. Barros, “Workflow patterns,” Distrib.
Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003.

[39] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Al-
gorithms. Wiley-Interscience, 2004.

[40] W. W. Cohen, “Fast effective rule induction,” in In Proc. of
the Twelfth Int. Conference on Machine Learning. Morgan
Kaufmann, 1995, pp. 115–123.

[41] F. Marozzo, D. Talia, and P. Trunfio, “A cloud framework
for parameter sweeping data mining applications,” in Third
Inter. Conference on Cloud Computing Technology and Science, ser.
Cloudcom’11, Athens, Greece, 2011, pp. 367–374.

Fabrizio Marozzo received a Ph.D. in sys-
tems and computer engineering from the
University of Calabria, Italy. In 2011-2012 he
visited the Barcelona SuperComputing Cen-
ter (BSC) for a research internship. He co-
authored many papers published in confer-
ence proceedings, edited volumes and inter-
national journals. His research interests in-
clude distributed systems, Cloud computing,
data mining and peer-to-peer networks.

Domenico Talia is a professor of com-
puter engineering at the University of Cal-
abria. His research interests include paral-
lel and distributed data mining algorithms,
Cloud computing, distributed knowledge dis-
covery and peer-to-peer systems. He is a
member of several editorial boards, including
IEEE Transactions on Cloud computing, Fu-
ture Generation Computer Systems, and the
Journal of Cloud Computing.

Paolo Trunfio is an associate professor of
computer engineering at the University of
Calabria, Italy. In 2007 he was a visiting
researcher at the Swedish Institute of Com-
puter Science (SICS). Previously, he was a
research collaborator at the Institute of Sys-
tems and Computer Science of the Italian
National Research Council (ISI-CNR). His
research interests include Cloud computing,
data mining, and peer-to-peer systems.


